On the investigation of the bilayer functionalities of 1,2-di-oleoyl-sn-glycero-3-phosphatidylcholine (DOPC) large unilamellar vesicles using cationic hemicyanines as optical probes: A wavelength-selective fluorescence approach
详细信息    查看全文
文摘
The behavior of the cationic hemicyanines trans-4-[4-(dimethylamino)-styryl]-1-methylpyridinium iodide (HC) and 4,(4-(dihexadecylamino)styryl-N-methyl-pyridinium iodide (DIA) were studied in large unilamellar vesicles (LUV) of 1,2-di-oleoyl-sn-glycero-3-phosphatidylcholine (DOPC) using absorption, emission, depolarization and time resolved spectroscopies. Also, thorough spectroscopic studies were performed in homogeneous media to investigate the different interactions that the dyes can experience with its microenvironment. These results help us to comprehend the dye performance under different media and, consequently find interesting features of the DOPC membrane properties. The studies in homogeneous media analyzed by the Kamlet and Taft's solvatochromic comparison method demonstrate, for the first time, that the cationic hemycianines undergo specific interactions with the medium through the solvents ability to donate an electron pair as measured by the β parameter. Thus, the absorption bands shifts bathochromically with β while, the emission band shifts hypsochromically. In addition, for the relaxed hemicyanines the 00 energy, md5=3a6d698ca1ee4c727a14664ade9b04dc"" title=""Click to view the MathML source"">ν00, is invariant with the solvent properties. The results in LUV of DOPC show that, DIA undergoes a strong association with the vesicle bilayer while HC partitions between the water and the bilayer pseudophases. To monitor directly the microenvironment and dynamics around HC and DIA inside the DOPC bilayer, we use the wavelength-selective fluorescence approach, which is based on the red edge effect in fluorescence spectroscopy, in addition with the md5=abafbf332e8f3d05303574edfd166484"" title=""Click to view the MathML source"">ν00 energy of the hemicyanines. The results show that the fluid state of the DOPC bilayer resembles the microenvironment of sodium bis (2-ethylhexyl) sulfosuccinate (AOT) reverse micelles at md5=41fd246d580d1500ade161216d583bc3"">[H2O]/[AOT] below 10 where there is no free water forming the water pool. Moreover, it is demonstrated for the first time, that the region of the bilayer close to the polar head of DOPC is a powerful electron donor environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700