Poly(ADP-ribose) polymerase inhibition prevents reactive oxygen species induced inhibition of aldehyde dehydrogenase2 activity
详细信息    查看全文
文摘
Lipid peroxidation plays a critical role in cardiovascular diseases. Aldehydes are the major end products of lipid peroxidation and can be metabolized into less reactive chemical species by aldehyde dehydrogenase 2 (ALDH2). However, ALDH2 dehydrogenase activity can be affected by many factors including reactive oxygen species. To elucidate how reactive oxygen species inhibit ALDH2 dehydrogenase activity, we stimulated human aortic endothelial cells (HAECs) with oxidized low-density lipoproteins (ox-LDL) and performed a myocardial ischemia-reperfusion model. Ox-LDL treatment and ischemia-reperfusion injury inhibited ALDH2 dehydrogenase activity. Poly(ADP-ribose) polymerase (PARP) was activated by ox-LDL stimulation and ischemia-reperfusion injury and PARP inhibition partly restored ALDH2 dehydrogenase activity in ox-LDL treated HAECs and ischemia-reperfusion rat hearts. SIRT3 was upregulated by ox-LDL stimulation and ischemia-reperfusion injury and downregulated by PARP inhibition. Using siRNA to knock down SIRT3, we demonstrated that SIRT3 mediated deacetylation decreased ALDH2 dehydrogenase activity and PARP inhibition partly restored ALDH2 dehydrogenase activity through preventing SIRT3 expression and subsequently preserving ALDH2 acetylation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700