Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates
详细信息    查看全文
文摘
The fracture energy of ultra-high-performance fiber-reinforced concrete (UHPFRC) at high strain rates (5–92 s− 1) was investigated, and specimens with 1–1.5% fibers exhibited very high fracture energy (28–71 kJ/m2). Evaluation of the rate effects on the UHPFRC fracture resistance, including fracture strength (ft), specific work-of-fracture (WS), and softening fracture energy (WF), indicated that ft and WS were highly sensitive to strain rate, whereas WF was not. The effects of fiber type, volume content, specimen shape and fiber blending on the fracture resistance at high and static strain rates differed significantly: 1) smooth fibers exhibited higher ft and WS at high rates than twisted fibers; 2) higher fiber volume content did not clearly generate higher WS and WF at high rates; 3) notched specimens generally exhibited higher fracture resistance than un-notched samples at both static and high rates; and 4) UHPFRC blending two fibers produced higher WS and WF than UHPFRC with mono fiber at high rates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700