Fabrication of large-area and high-quality colloidal crystal films on nanocrystalline porous substrates by a room temperature floating self-assembly method
详细信息    查看全文
文摘
When colloidal crystal films are deposited onto nanocrystalline porous substrates by the commonly used colloidal crystallization method of vertical deposition self-assembly, the colloidal crystal tends to be poorly adhered to the porous film. Herein, we present a fabrication of large-area, three-dimensional (3D) colloidal crystal thin films on nanocrystalline porous substrates by a room temperature floating self-assembly method that has recently been developed for colloidal crystal deposition. Firstly, colloidal suspensions were prepared by dispersing monodisperse colloidal microspheres at high volume fraction in a mixture of ethanol and water. At room temperature, these suspensions were spread onto nanocrystalline porous TiO2 films. The colloidal particles assembled into 3D ordered structures at the air−liquid interface of the suspensions as a result of rapid evaporation of the solvents. After the solvents (water and ethanol) had evaporated completely, the colloidal crystals were directly deposited on the nanocrystalline porous TiO2 films. Scanning electron microscopy images and normal-incidence transmission spectra of the samples showed that the colloidal crystal films deposited on the nanocrystalline porous TiO2 substrates by this method had very high crystalline quality. In addition, the effect of the degree of surface roughness of the nanocrystalline porous substrate on the crystalline quality of the colloidal crystals has been studied.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700