Development of an axisymmetric population balance model for spray drying and validation against experimental data and CFD simulations
详细信息    查看全文
文摘
An incremental model for spray drying, including a full droplet size distribution, has been implemented in a flowsheeting package incorporating tracking of distributed particle properties. Results were compared with expected trends based on standard theory and with results from a laboratory-scale spray dryer with a two-fluid nozzle for atomization. Predicted trends were as expected, with larger droplets giving substantially longer drying times and higher final moisture content. Predicted final moisture content was lower than measured values, as the very short residence times for fine particles were inadequately represented by first-order falling-rate drying kinetics. Dryer gas flow patterns were simulated by computational fluid dynamics. Calculated droplet residence times were much lower than for a plug-flow or fully mixed gas flow, because a high-velocity gas flow zone from the two-fluid atomizer persists down a substantial part of the dryer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700