A new cut-cell algorithm for DSMC simulations of rarefied gas flows around immersed moving objects
详细信息    查看全文
文摘
Direct Simulation Monte Carlo (DSMC) is a widely applied numerical technique to simulate rarefied gas flows. For flows around immersed moving objects, the use of body fitted meshes is inefficient, whereas published methods using cut-cells in a fixed background mesh have important limitations. We present a novel cut-cell algorithm, which allows for accurate DSMC simulations around arbitrarily shaped moving objects. The molecule–surface interaction occurs exactly at the instantaneous collision point on the moving body surface, and accounts for its instantaneous velocity, thus precisely imposing the desired boundary conditions. A simple algorithm to calculate the effective volume of cut cells is presented and shown to converge linearly with grid refinement. The potential and efficiency of method is demonstrated by calculating rarefied gas flow drag forces on steady and moving immersed spheres. The obtained results are in excellent agreement with results obtained with a body-fitted mesh, and with analytical approximations for high-Knudsen number flows.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700