Geodynamical modeling and multiscale seismic expression of thermo-chemical heterogeneity and phase transitions in the lowermost mantle
详细信息    查看全文
文摘
The D region at the base of the mantle is characterized by seismologically inferred 3D heterogeneity, including multiple interfaces, localized low velocity zones, and anisotropy. The occurrence of the post-perovskite (PPV) phase transition with a steep Clapeyron slope of 11.5–13 MPa/K, close to the core–mantle boundary, is a prime candidate for explaining observed seismic layering in the D. To examine the effect of the PPV phase transition on seismic structure we have carried out finite-element simulations with high-resolution (up to 3 km) in a cylindrical geometry. The rheology of the mantle has both Newtonian diffusion and non-Newtonian components, with a much greater propensity to non-Newtonian for PPV. From the temperature output we computed the 2D variations in shear wavespeed using a seismic equation of state based on mineral physics data. We then use a wave-packet decomposition of the wavespeed variations, which accounts for the events-to-stations illumination to obtain the seismic expressions of the geodynamically modeled structures. The results reveal lens-shaped PPV structures, much like the patterns obtained from seismic imaging with ScS data. A similar analysis of thermo-chemical anomalies from a subducting slab with crustal material shows that structures with a spatial scale of MORB crustal thickness produce characteristic features reminiscent of the small scale detail in the seismic imaging results. These experiments illustrate the high sensitivity of the seismic expression near the CMB to the wavespeed coefficients of the oceanic crust under high pressure conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700