Determination of NMR interaction parameters from double rotation NMR
详细信息    查看全文
文摘
It is shown that the anisotropic NMR parameters for half-integer quadrupolar nuclei can be determined using double rotation (DOR) NMR at a single magnetic field with comparable accuracy to multi-field static and MAS experiments. The 17O nuclei in isotopically enriched l-alanine and OPPh3 are used as illustrations. The anisotropic NMR parameters are obtained from spectral simulation of the DOR spinning sideband intensities using a computer program written with the GAMMA spin-simulation libraries. Contributions due to the quadrupolar interaction, chemical shift anisotropy, dipolar coupling and J coupling are included in the simulations. In l-alanine the oxygen chemical shift span is 455 ± 20 ppm and 350 ± 20 ppm for the O1 and O2 sites, respectively, and the Euler angles are determined to an accuracy of ±5–10°. For cases where effects due to heteronuclear J and dipolar coupling are observed, it is possible to determine the angle between the internuclear vector and the principal axis of the electric field gradient (EFG). Thus, the orientation of the major components of both the EFG and chemical shift tensors (i.e., V33 and δ33) in the molecular frame may be obtained from the relative intensity of the split DOR peaks. For OPPh3 the principal axis of the 17O EFG is found to be close to the O–P bond, and the 17O–31P one-bond J coupling (1JOP = 161 ± 2 Hz) is determined to a much higher accuracy than previously.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700