Contact stresses in adhesive joints due to differential thermal expansion with the adherends
详细信息    查看全文
文摘
The contact stresses in a bonded joint due to differential thermal expansions are calculated by considering the adhesive as an elastic rectangle confined by plates representing the adherends. The interface is cohesive in type, so that the contact area is a perfectly adherent region surrounded by cohesive areas where slip occurs at constant shear-stress. The problem is formulated in terms of Papkovich–Fadle eigenfunctions, which satisfy the boundary conditions on the stress free edges. The resulting integral equations are solved with the Jacobi integration formula. The size of the cohesive zone, which is determined by imposing the finiteness of the contact stresses at the frontier with the bonded region, depends upon the length and height of the joint. In very long joints the result tends to the technical rule of thumb traditionally employed to design such joints, but for intermediate lengths the elastic solution is quite different.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700