Spectral instability of general symmetric shear flows in a two-dimensional channel
详细信息    查看全文
文摘
In this paper, we prove the spectral instability of general symmetric shear flows of the incompressible Navier–Stokes equations at a high Reynolds number in a two-dimensional channel. This includes shear flows that are spectrally stable to the corresponding Euler equations, and thus for the first time, provides a complete mathematical proof of the viscous destabilization phenomenon, pointed out by Heisenberg (1924) [5], C.C. Lin (1944) [9] and Tollmien (1947) [17], among others. Precisely, we construct exact unstable eigenvalues and eigenfunctions of the linearized Navier–Stokes equations around symmetric shear flows, showing that the solution could grow slowly at the rate of View the MathML source, where R is the sufficiently large Reynolds number and α   is the small spatial frequency that remains between lower and upper marginal stability curves: αlow(R)≈R−1/7 and αup(R)≈R−1/11. We introduce a new, operator-based approach, which avoids to deal with matching inner and outer asymptotic expansions, but instead involves a careful study of singularity in the critical layers by deriving pointwise bounds on the Green function of the corresponding Rayleigh and Airy operators.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700