Complex modal analysis of rods with viscous damping devices
详细信息    查看全文
文摘
The complex modal analysis of rods equipped with an arbitrary number of viscous damping devices is addressed. The following types of damping devices are considered: external (grounded) spring-damper, attached mass-spring-damper and internal spring-damper. Within a standard 1D formulation of the vibration problem, the theory of generalized functions is used to model axial stress and displacement discontinuities at the locations of the damping devices. By using the separate variable approach, a simple solution procedure of the motion equation leads to exact closed-form expressions of the characteristic equation and eigenfunctions, which inherently fulfill the required matching conditions at the locations of the damping devices. Based on the characteristic equation, a closed-form sensitivity analysis of the eigensolution is implemented. The displacement eigenfunctions exhibit orthogonality conditions. They can be used with the complex mode superposition principle to tackle forced vibration problems and, in conjunction with the stress eigenfunctions, to build the exact dynamic stiffness matrix of the rod for complex modal analysis of truss structures. Numerical results are discussed for a variety of parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700