Detection of epilepsy with Electroencephalogram using rule-based classifiers
详细信息    查看全文
文摘
Epilepsy is a common neurological disorder, characterized by recurrent seizures. Electroencephalogram (EEG), a useful measure for analysing the brain's electrical activity, has been widely used for the detection of epileptic seizures. Most existing classification techniques are primarily aimed at increasing detection accuracy, while the interpretability of the methods have received relatively little attention. In this work, we concentrate on the epileptic classification of EEG signals with interpretability. We propose an epilepsy detection framework, followed by a comparative study under this framework to evaluate the accuracy and interpretability of four rule-based classifiers, namely, the decision tree algorithm C4.5, the random forest algorithm (RF), the support vector machine (SVM)-based decision tree algorithm (SVM+C4.5), and the SVM-based RF algorithm (SVM+RF), in two-group, three-group, and–the most challenging of all–five-group classifications of EEG signals. The experimental results showed that RF outperformed the other three rule-based classifiers, achieving average accuracies of 0.9896, 0.9600, and 0.8260 for the two-group, three-group, and five-group seizure classifications respectively, and exhibiting higher interpretability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700