Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies
详细信息    查看全文
文摘
Carbon nanotubes (CNTs) were aligned in gelatin methacryloyl (GelMA) hydrogels using dielectrophoresis approach. Mouse embryoid bodies (EBs) were cultured in the microwells fabricated on the aligned CNT-hydrogel scaffolds. The GelMA-dielectrophoretically aligned CNT hydrogels enhanced the cardiac differentiation of the EBs compared with the pure GelMA and GelMA-random CNT hydrogels. This result was confirmed by Troponin-T immunostaining, the expression of cardiac genes (i.e., Tnnt2, Nkx2-5, and Actc1), and beating analysis of the EBs. The effect on EB properties was significantly enhanced by applying an electrical pulse stimulation (frequency, 1 Hz; voltage, 3 V; duration, 10 ms) to the EBs for two continuous days. Taken together, the fabricated hybrid hydrogel-aligned CNT scaffolds with tunable mechanical and electrical characteristics offer an efficient and controllable platform for electrically induced differentiation and stimulation of stem cells for potential tissue regeneration and cell therapy applications.

Statement of significance

Dielectrophoresis approach was used to rapidly align carbon nanotubes (CNTs) in gelatin methacryloyl (GelMA) hydrogels resulting in hybrid GelMA-CNT hydrogels with tunable and anisotropic electrical and mechanical properties. The GelMA-aligned CNT hydrogels may be used to apply accurate and controllable electrical pulses to cell and tissue constructs and thereby regulating their behavior and function. In this work, it was demonstrated that the GelMA hydrogels containing the aligned CNTs had superior performance in cardiac differentiation of stem cells upon applying electrical stimulation in contrast with control gels. Due to broad use of electrical stimulation in tissue engineering and stem cell differentiation, it is envisioned that the GelMA-aligned CNT hydrogels would find wide applications in tissue regeneration and stem cell therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700