Genetic modification of hypertension by sGC¦Á1
详细信息    查看全文
  • 作者:Patrick Y. Sips ; Emmanuel S. Buys
  • 刊名:Trends in Cardiovascular Medicine
  • 出版年:2013
  • 出版时间:November, 2013
  • 年:2013
  • 卷:23
  • 期:8
  • 页码:312-318
  • 全文大小:512 K
文摘
Hypertension is an important modifiable risk factor for coronary heart disease, congestive heart failure, stroke, end-stage renal disease, and peripheral vascular disease, but many of the molecular mechanisms and genetic factors underlying the development of the most common forms of human hypertension remain to be defined. Abundant evidence suggests that nitric oxide (NO) and one of its primary targets, the cyclic guanosine monophosphate (cGMP)-generating enzyme soluble guanylate cyclase (sGC), have a critical role in regulating blood pressure. The availability of murine models of hypertension and the revolution in human genetics research (e.g., genome-wide association studies [GWAS]), resulting in the identification of dozens of genetic loci that affect normal variation in blood pressure and susceptibility to hypertension, provide a unique opportunity to dissect the mechanisms by which NO-cGMP signaling regulates blood pressure and to gain important insights into the pathogenesis of hypertension. In this review, we will give an overview of the current knowledge relating to the role of sGC in the regulation of blood pressure, discussing data obtained from genetically modified mouse models as well as from human genetic studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700