Transcriptomic analysis of the white rot fungus Polyporus brumalis provides insight into sesquiterpene biosynthesis
详细信息    查看全文
文摘
Object of this study was to identify genes and enzymes that are involved in sesquiterpene biosynthesis in the wood rotting fungus, Polyporus brumalis. Sesquiterpenes, β-eudesmane and β-eudesmol, were produced by the mycelium of P. brumalis cultured in modified medium. However, theses final products were not observed when the fungus was grown in potato dextrose medium. We used next generation sequencing (NGS) to identify differentially expressed genes (DEGs) related to terpene metabolism. This approach generated 25,000 unigenes and 127 metabolic pathways that were assigned to Kyoto Encyclopedia Genes Groups (KEGG). Further analysis of samples from modified medium indicated significant upregulation of 8 unigenes involved in the mevalonate (MVA) and methylerythritol phosphate (MEP) biosynthetic pathways. These pathways generate isopentenyl pyrophosphate (IPP) and farnesyl pyrophosphate (FPP), which are precursors for the synthesis of sesquiterpenes. Furthermore, genes encoding germacrene A synthase, which facilitate the cyclization of FPP, were only differentially expressed in mycelium from fungi grown in modified medium. Our data provide a resource for studying the molecular mechanisms underpinning sesquiterpene biosynthesis and terpene metabolism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700