Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: Measurement and analysis
详细信息    查看全文
文摘
Micro and nano-particles have been successfully and widely applied in many industrial applications. The mechanical milling process is a popular technique used to produce micro and nano-particles. Therefore, it is very important to improve milling process efficiency and quality by determining the optimal milling parameters. In this study, the effects of the main mechanical milling parameters: milling time, process control agent (PCA), ball to powder ratio (BPR) and milling speed in the planetary ball milling of nanocrystalline Al 2024 powder were optimized by the Taguchi method. Mean particle size (d50) was used to evaluate the effect of process parameters on the mechanical milling process. The orthogonal array experiment is conducted to economically obtain the response measurements. Analysis of variance (ANOVA) and main effect plot are used to determine the significant parameters and set the optimal level for each parameter. The as-received and milled powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and a laser particle size analyzer, respectively. The results indicate that the process control agent significantly affects (84 % contribution) the mean particle size (d50) while other parameters have a lower effect (16 % contribution). The developed model can be used in the mechanical milling processes in order to determine the optimum milling parameters for minimum particle size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700