Anomalous dispersion and band gap reduction in UO2+x and its possible coupling to the coherent polaronic quantum state
详细信息    查看全文
文摘
Hypervalent UO2, UO2(+x) formed by both addition of excess O and photoexcitation, exhibits a number of unusual or often unique properties that point to it hosting a polaronic Bose–Einstein(-Mott) condensate. A more thorough analysis of the O X-ray absorption spectra of UO2, U4O9, and U3O7 shows that the anomalous increase in the width of the spectral features assigned to predominantly U 5f and 6d final states that points to increased dispersion of these bands occurs on the low energy side corresponding to the upper edge of the gap bordered by the conduction or upper Hubbard band. The closing of the gap by 1.5 eV is more than twice as much as predicted by calculations, consistent with the dynamical polaron found by structural measurements. In addition to fostering the excitation that is the proposed mechanism for the coherence, the likely mirroring of this effect on the occupied, valence side of the gap below the Fermi level points to increased complexity of the electronic structure that could be associated with the Fermi topology of BEC–BCS crossover and two band superconductivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700