Gene expression profiling of renal dysfunction in rats with experimental cirrhosis
详细信息    查看全文
文摘

Background/Aims

Renal dysfunction is a frequent complication in advanced cirrhosis. The mechanisms underlying this complication have classically been addressed through conventional methods of study of candidate genes, but never on a genome-wide scale. In this investigation, we used microarrays to monitor global gene expression changes in the kidney of cirrhotic rats.

Methods

Renal samples were obtained from control and carbon tetrachloride-induced cirrhotic rats. RNA samples were reverse-transcribed into Cy5-labeled cDNA, combined with a Cy3-labeled reference and hybridized to oligonucleotide microarrays. Microarrays were scanned in a Genepix 4000B and data analyzed by Luminator v2.0 software.

Results

A total of 620 genes were differentially regulated (354 up and 266 down) in the cirrhotic kidney, accounting for approximately 11 % of all analyzed transcripts. Functional grouping of these genes revealed that 47 were related to the category of vascular tone and 85 to transporters/channels. Among these, we identified genes and pathways already associated with renal dysfunction as well as a new subset of genes previously unknown to participate in this complication, including a G protein-coupled receptor that binds apelin, a protein phosphatase (calcineurin B) and a number of neuropeptide receptors and growth factors.

Conclusions

These findings furnish new data for mechanistic investigation into renal dysfunction in cirrhosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700