Parametric imaging with Bayesian priors: A validation study with 11C-Altropane PET
详细信息    查看全文
文摘
It has been suggested that Bayesian estimation methods may be used to improve the signal-to-noise ratio of parametric images. However, there is little experience with the method and some of the underlying assumptions and performance properties of Bayesian estimation remain to be investigated. We used a sample population of 54 subjects, studied previously with 11C-Altropane, to empirically evaluate the assumptions, performance and some practical issues in forming parametric images. By using normality tests, we showed that the underpinning normality assumptions of data and parametric distribution apply to more than 80 % of voxels. The standard deviation of the binding potential can be reduced 30-50 % using Bayesian estimation, without introducing substantial bias. The sample size required to form the a priori information was found to be modest; as little as ten subjects may be sufficient and the choice of specific subjects has little effect on Bayesian estimation. A realistic simulation study showed that detection of localized differences in parametric images, e.g. by statistical parametric mapping (SPM), could be made more reliable and/or conducted with smaller sample size using Bayesian estimation. In conclusion, Bayesian estimation can improve the SNR of parametric images and better detect localized changes in cohorts of subjects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700