Molecular dynamics simulations of nanoscale metal tips under electric fields
详细信息    查看全文
文摘
Vacuum arcing is a plasma discharge over a metal surface under high electric fields. Plasma formation requires the supply of neutral atoms, which under high vacuum condition can only come from the surface itself. Nevertheless, the mechanisms by which the atoms are supplied are not known. In the present work, we propose a model for the onset of surface roughness and field-enhanced atom evaporation. Specifically, we describe a dislocation mechanism of tip growth from near-surface voids. We also simulate surface charging and resistive heating using a hybrid electrodynamics and molecular dynamics (ED&MD) code for dynamic simulations of electronic effects. We study the morphological evolution of the nanoscale protrusion under the electronic effects, such as the stretching of the tip by the stress induced by the electric field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700