Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model
详细信息    查看全文
文摘
Large-scale deployment of carbon capture and storage needs a dedicated infrastructure. Planning and designing of this infrastructure require incorporation of both temporal and spatial aspects. In this study, a toolbox has been developed that integrates ArcGIS, a geographical information system with spatial and routing functions, and MARKAL, an energy bottom-up model based on linear optimization. Application of this toolbox led to blueprints of a CO2 infrastructure in the Netherlands. The results show that in a scenario with 20 % and 50 % CO2 emissions reduction targets compared to their 1990 level in respectively 2020 and 2050, an infrastructure of around 600 km of CO2 trunklines may need to be built before 2020. Investment costs for the pipeline construction and the storage site development amount to around 720 m€ and 340 m€, respectively. The results also show the implication of policy choices such as allowing or prohibiting CO2 storage onshore on CO2 Capture and Storage (CCS) and infrastructure development. This paper illustrates how the ArcGIS/MARKAL-based toolbox can provide insights into a CCS infrastructure development, and support policy makers by giving concrete blueprints over time with respect to scale, pipeline trajectories, and deployment of individual storage sites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700