Stabilizing composite control for a class of linear systems modeled by singularly perturbed Ito differential equations
详细信息    查看全文
文摘
In this paper, the problem of robust H control is investigated for sampled-data systems with probabilistic sampling. The parameter uncertainties are time-varying norm-bounded and appear in both the state and input matrices. For the simplicity of technical development, only two different sampling periods are considered whose occurrence probabilities are given constants and satisfy Bernoulli distribution, which can be further extended to the case with multiple stochastic sampling periods. By applying an input delay approach, the probabilistic sampling system is transformed into a continuous time-delay system with stochastic parameters in the system matrices. By linear matrix inequality (LMI) approach, sufficient conditions are obtained, which guarantee the robust mean-square exponential stability of the system with an H performance. Moreover, an H controller design procedure is then proposed. An illustrative example is included to demonstrate the effectiveness of the proposed techniques.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700