Propagation of atmospheric density errors to satellite orbits
详细信息    查看全文
文摘
We develop and test approximate analytic expressions relating time-dependent atmospheric density errors to errors in the mean motion and mean anomaly orbital elements. The mean motion and mean anomaly errors are proportional to the first and second integrals, respectively, of the density error. This means that the mean anomaly (and hence the in-track position) error variance grows with time as t3 for a white noise density error process and as t5 for a Brownian motion density error process. Our approximate expressions are accurate over a wide range of orbital configurations, provided the perigee altitude change is less than ∼0.2 atmospheric scale heights. For orbit prediction, density forecasts are driven in large part by forecasts of solar extreme ultraviolet (EUV) irradiance; we show that errors in EUV ten-day forecasts (and consequently in the density forecasts) approximately follow a Brownian motion process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700