Spin-state dependence of electrical resistivity and thermoelectric power of molten Al-Mn alloys: Experiment and theory
详细信息    查看全文
文摘
We present experimental measurements of resistivity and thermoelectric power of liquid alloys, Al1−x–Mnx, (x = 0.12, 0.14, 0.16, 0.18, 0.20). The resistivity increases from 28.88 μΩ cm for pure aluminum to 123.3 μΩ cm for the alloy. No resistivity extremum is observed near the Mn concentration x = 0.14, in contrast to that observed in the quasi-crystalline state. At 1323 K. The temperature coefficient of the experimental resistivity is found to have a minimum value in the near vicinity of x = 0.16. For all these five compositions the thermoelectric power is negative and does not display any anomaly. Also we have proposed theoretical model, based on Faber Ziman formalism, to calculate both resistivity and the thermoelectric power.

The neutron scattering experiment on Al0.80Mn0.20 liquid alloy confirmed that the effective spin of Manganese atoms had a mean value around 1 and that the Manganese could exist in two states of different magnetic moments. By minimizing the energy of the spin flip, we demonstrated the fact that Manganese appears in Al1−xMnx alloys as a mixture of Manganese atoms of spin 1/2 and 3/2 in proportions equal to 7/12 and 5/12, respectively. The Manganese atoms with one spin value different of zero may be considered as a binary alloy (B. Grosdidier, A. Ben Abdellah, K. Bouziane, S. M. Mujibur Rahman and J. G. Gasser, Phil. Mag. 93 no 26 (2013) p.3576.) owing to the spin dependence of the exchange and correlation. In this work, we treated Manganese with its two spin values as a quaternary alloy. Consequently, in our calculations, we treated Al–Mn as five component alloys. This allowing us to extend the Faber Ziman formalism originally designed for a binary alloy to a five-component formalism. Our theoretical results are in fairly good agreement with our experimental values which validates the assumptions of our model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700