Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process
详细信息    查看全文
文摘
Plasma electrolytic oxidation (PEO) process was employed to create ceramic coatings on titanium substrate by using silicate-based electrolytes containing different concentrations of alumina nanoparticles (0, 3, 6, and 10 g/lit). The effect of alumina nanoparticles concentration on the morphology, chemical and phase composition of the PEO coatings was investigated by scanning electron microscope, energy dispersive spectrometer, and X-ray diffractometer, respectively.

The corrosion behavior of samples was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. SEM, EDS, and XRD analyses illustrated that alumina nanoparticles incorporated into the coatings and reduced the density and size of the pores. Furthermore, according to the voltage-time responses, presence of alumina nanoparticles in the electrolyte increased the starting time of sparking due to hindrance effect of these particles on the barrier layer formation. It was found that the corrosion resistance rose by increasing the concentration of alumina nanoparticles. The coating which was formed in electrolyte containing 10 g/l alumina nanoparticles possessed the lowest porosity (11.2%) which boosted the corrosion resistance of the substrate from 2.33×104 to 1.26×106 Ω cm2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700