Transcranial Direct Current Stimulation Effects on the Excitability of Corticospinal Axons of the Human Cerebral Cortex
详细信息    查看全文
文摘

Background

Transcranial direct current stimulation (tDCS) of the human cerebral cortex modulates cortical excitability non-invasively in a polarity-specific manner: anodal tDCS leads to lasting facilitation of motor cortex excitability.

Objective

To further elucidate the underlying physiological mechanisms of tDCS.

Methods

We recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation of the primary motor cortex before and after a 20 min period of anodal tDCS in a conscious patient who had electrode implanted in the cervical epidural space for the control of pain. We performed magnetic stimulation of the motor cortex using a direction of the induced current in the brain capable of activating both corticospinal axons, evoking D-wave activity, and cortico-cortical axons projecting upon corticospinal cells, evoking I-wave activity.

Results

Anodal tDCS increased the excitability of cortical circuits generating both D and I-wave activity, with a more prolonged effect on D-wave activity. The changes in motor evoked potential recorded from hand muscles produced by tDCS were in agreement with the effects produced on intracortical circuitry.

Conclusions

Epidural recordings of corticospinal activity in our patient indicate that anodal tDCS develops its facilitatory effects by an increase in the excitability of corticospinal axons and by an increase of activity in cortico-cortical projections onto pyramidal tract neurones, modulating motor cortex excitability with both synaptic (I waves) and non-synaptic (D waves) mechanisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700