Preclinical QT safety assessment: Cross-species comparisons and human translation from an industry consortium
详细信息    查看全文
文摘

Introduction

In vivo models have been required to demonstrate relative cardiac safety, but model sensitivity has not been systematically investigated. Cross-species and human translation of repolarization delay, assessed as QT/QTc prolongation, has not been compared employing common methodologies across multiple species and sites. Therefore, the accurate translation of repolarization results within and between preclinical species, and to man, remains problematic.

Methods

Six pharmaceutical companies entered into an informal consortium designed to collect high-resolution telemetered data in multiple species (dog; n = 34, cynomolgus; n = 37, minipig; n = 12, marmoset; n = 14, guinea pig; n = 5, and man; n = 57). All animals received vehicle and varying doses of moxifloxacin (3-100 mg/kg, p.o.) with telemetered ECGs (鈮?#xA0;500 Hz) obtained for 20-24 h post-dose. Individual probabilistic QT-RR relationships were derived for each subject. The rate-correction efficacies of the individual (QTca) and generic correction formulae (Bazett, Fridericia, and Van de Water) were objectively assessed as the mean squared slopes of the QTc-RR relationships. Normalized moxifloxacin QTca responses (Veh 螖%/渭M) were derived for 1 h centered on the moxifloxacin Tmax.

Results

All QT-RR ranges demonstrated probabilistic uncertainty; slopes varied distinctly by species where dog and human exhibited the lowest QT rate-dependence, which was much steeper in the cynomolgus and guinea pig. Incorporating probabilistic uncertainty, the normalized QTca-moxifloxacin responses were similarly conserved across all species, including man.

Discussion

The current results provide the first unambiguous evidence that all preclinical in vivo repolarization assays, when accurately modeled and evaluated, yield results that are consistent with the conservation of moxifloxacin-induced QT prolongation across all common preclinical species. Furthermore, these outcomes are directly transferable across all species including man. The consortium results indicate that the implementation of standardized QTc data presentation, QTc reference cycle lengths, and rate-correction coefficients can markedly improve the concordance of preclinical and clinical outcomes in most preclinical species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700