High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF
详细信息    查看全文
文摘
Interference screw in the fixation of autologous tendon graft to the bone tunnel is widely accepted for the reconstruction of anterior cruciate ligament (ACL), but the regeneration of fibrocartilaginous entheses could hardly be achieved with the traditional interference screw. In the present work, biodegradable high-purity magnesium (HP Mg) showed good cytocompatibility and promoted the expression of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF), fibrocartilage markers (Aggrecan, COL2A1 and SOX-9), and glycosaminoglycan (GAG) production in vitro. The HP Mg screw was applied to fix the semitendinosus autograft to the femoral tunnel in a rabbit model of ACL reconstruction with titanium (Ti) screw as the control. The femur-tendon graft-tibia complex was retrieved at 3, 6, 9 and 12 weeks. Gross observation and range of motion (ROM) of the animal model reached normal levels at 12 weeks. No sign of host reaction was found in the X-ray scanning. The HP Mg group was comparable to the Ti group with respect to biomechanical properties of the reconstructed ACL, and the ultimate load to failure and stiffness increased 12 weeks after surgery. In the histological analysis, the HP Mg group formed distinct fibrocartilage transition zones at the tendon-bone interface 12 weeks after surgery, whereas a disorganized fibrocartilage layer was found in the Ti group. In the immunohistochemical analysis, highly positive staining of BMP-2, VEGF and the specific receptor for BMP-2 (BMPR1A) was shown at the tendon-bone interface of the HP Mg group compared with the Ti group. Furthermore, the HP Mg group had significantly higher expression of BMP-2 and VEGF than the Ti group in the early phase of tendon-bone healing, followed by enhanced expression of fibrocartilage markers and GAG production. Therefore we proposed that the stimulation of BMP-2 and VEGF by Mg ions was responsible for the fibrochondrogenesis of Mg materials. HP Mg was promising as a biodegradable interference screw with the potential to promote fibrocartilaginous entheses regeneration in ACL reconstruction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700