Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations
详细信息    查看全文
文摘
A detailed study of low-pressure gas–solid carbonation of chrysotile in dry and humid environments has been carried out. The evolving structure of chrysotile and its reactivity as a function of temperature (300–1200 °C), humidity (0–10 mol % ) and CO2 partial pressure (20–67 mol % ), thermal preconditioning, and alkali metal doping (Li, Na, K, Cs) have been monitored through in-situ X-ray photoelectron spectroscopy, isothermal thermogravimetry/mass spectrometry, ex-situ X-ray powder diffraction, and water and nitrogen adsorption/desorption. Based on chrysotile crystalline structure and its nanofibrilar orderliness, a multistep carbonation mechanism was elaborated to explain the role of water during chrysotile partial amorphisation, formation of periclase, brucite, and hydromagnesite crystalline phases, and surface passivation thereof, during humid carbonation. The weak carbonation reactivity was rationalized in terms of incongruent CO2 van der Waals molecular diameters with the octahedral–tetrahedral lattice constants of chrysotile. This lack of reactivity appeared to be relatively indifferent to the facilitated water crisscrossing during chrysotile core dehydroxylation/pseudo-amorphisation and surface hydroxylation induced product stabilization during humid carbonation. Thermodynamic stability domains of the species observed at low pressure have been thoroughly discussed on the basis of X-ray powder diffraction patterns and X-ray photoelectron spectroscopy evidence. The highest carbon dioxide uptake occurred at 375 °C in moist atmospheres. On the basis of chrysotile fresh N2 BET area, nearly 15 atoms out of 100 of the surface chrysotile brucitic Mg moiety have been carbonated at this temperature which was tantamount to the carbonation of about 2.5 at. % of the total brucitic Mg moiety in chrysotile. The carbonation of brucite (Mg(OH)2) impurities coexisting in chrysotile was minor and estimated to contribute by less than 17.6 at. % of the total converted magnesium. The presence of cesium traces (3 Cs atoms per 100 Mg atoms) was found to boost chrysotile carbonation capacity by a factor 2.7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700