Biobased porous acoustical absorbers made from polyurethane and waste tire particles
详细信息    查看全文
文摘
The production of flexible polyurethane foams (FPF) with good acoustical performance to control sound and noise and incorporating bio/recycled raw materials is an interesting alternative to conventional acoustic absorbent materials. In this sense, biobased polyols like glycerol (GLY) or hydroxylated methyl esters derived from tung oil (HMETO) as multifunctional polyols, and waste tire particles (WTP) as fillers of low thermal conductivity and good capability for acoustical absorption, are prospective feedstocks for FPF preparation. In this work, FPF were prepared by adding different amounts of these components to a formulation based on a commercial polyether polyol. Results of scanning electron microscopy (SEM) analysis, compression tests and normal-incidence sound absorption coefficient (αN) measurements are presented and discussed. The addition of WTP or GLY to the commercial formulation enhanced both the modulus and yield stress of the obtained FPF in all cases. Moreover, a high recovery of the applied strain (>90%) was attained 24 h after the compression tests. On the other hand, the normal-incidence sound absorption coefficient, αN, reached high values mostly at the highest evaluated frequencies (αN ∼0.62–0.89 at 2000 Hz and αN ∼0.70–0.91 at 5000 Hz). SEM micrographs revealed that the foams obtained present a combination of open and closed cell structure and both the modifiers and particles tend to decrease the cell size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700