Distributed adaptive output consensus control of a class of heterogeneous multi-agent systems under switching directed topologies
详细信息    查看全文
文摘
In this paper, we consider a leader-follower output consensus problem for a class of uncertain heterogeneous non-affine pure-feedback multi-agent systems (MASs) in the presence of time-delay items and input saturation restrictions under switching directed topologies. A distributed adaptive control scheme is constructed by combining Lyapunov–Krasovskii functionals, backstepping methods, neural networks (NNs), auxiliary systems, graph theory, the mean value theorem and the implicit function theory along with the dynamic surface control (DSC) technique. The key advantages of the designed control approach are that there is no requirement of precise knowledge about uncertain dynamics and time-delay items of individual agents and the computational burden can drastically be reduced by employing the DSC technique. Also, norms of unknown weight of neural networks are estimated online instead of weight vectors themselves. In theory, it can be proven that the output signals of follower agents can synchronize with the leader’s and all signals in the closed-loop system are cooperatively semiglobally uniformly ultimately bounded (CSUUB) by suitable choice of design parameters. Two simulation examples are presented to demonstrate the effectiveness of the proposed strategy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700