Lateral buckling of thin-walled beam-column elements under combined axial and bending loads
详细信息    查看全文
文摘
Based on a non-linear stability model, analytical solutions are derived for simply supported beam-column elements with bi-symmetric I sections under combined bending and axial forces. An unique compact closed-form is used for some representative load cases needed in design. It includes first-order bending distribution, load height level, pre-buckling deflection effects and presence of axial loads. The proposed solutions are validated by recourse to non-linear FEM software where shell elements are used in mesh process. The agreement of the proposed solutions with bifurcations observed on non-linear equilibrium paths is good. It is proved that classical linear stability solutions underestimate the real resistance of such element in lateral buckling stability especially for I section with large flanges. Numerical study of incidence of axial forces on lateral buckling resistance of redundant beams is carried out. When axial displacements of a beam are prevented important tension axial forces are generated in the beam. This results in important reduction of displacements and for some sections, the beam behaviour becomes non-linear without any bifurcation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700