Ductile failure as a result of a void-sheet instability: Experiment and computational modeling
详细信息    查看全文
文摘
The ductile fracture of circumferentially notched HY-100 steel specimens tested at high stress triaxiality is characterized by a fracture surface with a zig-zag profile created by large elongated voids separated by inclined sheets of microvoids. The failure path suggests that a local deformation instability, triggered by the growth of MnS inclusion-nucleated voids, may be responsible for this form of fracture. Measurements show that the failure strains are small and decrease slowly with increasing stress triaxiality as compared to a more global void coalescence. Micro-mechanical modeling by finite element analysis of a geometry based on the observed metallurgical microstructure shows a distinct localization of plastic flow. The localization of plastic flow leads to a void-sheet failure prediction and the experimental results are correctly characterized by the computational model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700