Kinetically stabilized metastable polarization states in ferroelectric ceramics
详细信息    查看全文
文摘
By directly using experimental hysteresis loop data, a Landau theory-based model has been developed to investigate the effects of externally applied stimuli (electric field, stress, and temperature) on the average, time-dependent response in ferroelectric ceramics. For both PLZT and BNT-BT-KNN systems, experimentally observed (macroscopic) metastable states are a result of a free energy minimum that develops at a zero polarization state when the sample is subject to an externally applied field. Additionally, the frequency dependent hysteresis response demonstrates that a transition between relaxor ferroelectric and antiferroelectric develops at a critical cycling frequency, in agreement with the literature. The appearance of frequency-induced and electric field amplitude-induced kinetically stabilized phases is proposed and summarized in terms of frequency-stress and frequency-temperature response maps.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700