Comparison of the Relation Between Left Ventricular Anatomy and QRS Duration in Patients With Cardiomyopathy With Versus Without Left Bundle Branch Block
详细信息    查看全文
文摘
QRS duration (QRSd) is used to diagnose left bundle branch block (LBBB) and is important to determine cardiac resynchronization therapy eligibility. The same QRSd thresholds established decades ago are used for all patients. However, significant interpatient variability of normal QRSd exists, and individualized QRSd thresholds might improve diagnosis and intervention strategies. Previous work reported left ventricular (LV) mass and papillary muscle location predicted QRSd in healthy subjects, but the relation in diseased ventricles is unknown. The aim of the present study was to determine the association between LV anatomy and QRSd in patients with cardiomyopathy. Patients referred for primary prevention implantable defibrillators (n = 166) received cardiac magnetic resonance imaging, and those with normal conduction (without bundle branch or fascicular block) and LBBB were studied. The LV mass, length, internal diameter, LV end-diastolic volume, septal and lateral wall thicknesses, and papillary muscle location were measured. In patients with normal conduction, LV length (r = 0.35, p <0.001), mass (r = 0.32, p <0.001), diameter (r = 0.20, p = 0.03), and septal wall thickness (r = 0.20, p = 0.03) had positive correlations with QRSd. In patients with LBBB, LV length (r = 0.32, p = 0.03), mass (r = 0.39, p = 0.01), diameter (r = 0.34, p = 0.02), and LV end-diastolic volume (r = 0.32, p = 0.04) had positive correlations with QRSd. Contrary to previous studies in healthy subjects, papillary muscle angle (location) was not associated with QRSd in cardiomyopathy patients with normal conduction or LBBB. In conclusion, increasing LV anatomical measurements were associated with increasing QRSd in patients with cardiomyopathy. Future work should investigate the use of LV anatomical measurements in developing individualized QRSd thresholds for diagnosing conduction abnormalities such as LBBB and identifying candidates for cardiac resynchronization therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700