The Assembly Pathway of an Icosahedral Single-Stranded RNA Virus Depends on the Strength of Inter-Subunit Attractions
详细信息    查看全文
文摘
The strength of attraction between capsid proteins (CPs) of cowpea chlorotic mottle virus (CCMV) is controlled by the solution pH. Additionally, the strength of attraction between CP and the single-stranded RNA viral genome is controlled by ionic strength. By exploiting these properties, we are able to control and monitor the in vitro co-assembly of CCMV CP and single-stranded RNA as a function of the strength of CP-CP and CP-RNA attractions. Using the techniques of velocity sedimentation and electron microscopy, we find that the successful assembly of nuclease-resistant virus-like particles (VLPs) depends delicately on the strength of CP-CP attraction relative to CP-RNA attraction. If the attractions are too weak, the capsid cannot form; if they are too strong, the assembly suffers from kinetic traps. Separating the process into two steps鈥攂y first turning on CP-RNA attraction and then turning on CP-CP attraction鈥攁llows for the assembly of well-formed VLPs under a wide range of attraction strengths. These observations establish a protocol for the efficient in vitro assembly of CCMV VLPs and suggest potential strategies that the virus may employ in vivo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700