A shear deformable, rotation-free isogeometric shell formulation
详细信息    查看全文
文摘
A finite element formulation for a geometrically linear, shear deformable (Reissner–Mindlin type) shell theory is presented, which exclusively uses displacement degrees of freedom. The total displacement is subdivided into a part representing the membrane and bending deformation, enriched by two extra “shear displacements”, representing transverse shear deformation. This rotation-free approach is accomplished within the isogeometric concept, using C1-continuous, quadratic NURBS as shape functions. The particular displacement parametrization decouples transverse shear from bending and thus the formulation is free from transverse shear locking by construction, i.e. locking is avoided on the theory level, not by choice of a particular discretization. Compared to the hierarchic formulation proposed earlier within the group of the authors (Echter et al., 2013), the method presented herein avoids artificial oscillations of the transverse shear forces. Up to now, a similar, displacement based method to avoid membrane locking has not been found. Thus, in the present formulation the mixed method from Echter et al. (2013) is used to avoid membrane locking.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700