A monogenetic algorithm for optimal design of large-scale heat exchanger networks
详细信息    查看全文
文摘
The optimal design of large-scale heat exchanger networks is a quite difficult task not only due to its non-linear characteristics but also due to a great number of local optima in its solution space. An explicit analytical solution of stream temperatures for the superstructure heat exchanger networks was developed, which reduces number of decision variables significantly. Based on this solution, a mathematical model for synthesis of heat exchanger networks was formulated for searching the optimal configuration of a heat recovery system by a hybrid genetic algorithm. For large-scale heat exchanger networks, a monogenetic algorithm based on the optimization of sub-networks is proposed. In the first step of the optimization, the hybrid genetic algorithm is applied to the synthesis of the whole heat exchanger network for finding the functional groups (sub-networks) rather than the chromosomes (positions of the heat exchangers and splits of the streams) and genes (areas and heat capacity flow rates). Then the monogenetic algorithm for evolution of the functional groups is carried out to improve the HEN. This procedure was applied to examples taken from literature and better results were obtained.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700