First principles study of structure and properties of La- and Mn-modified BiFeO3
详细信息    查看全文
文摘
First principles calculations have been performed to study the effects of the La3+ and Mn3+ substitutions in the multiferroic BiFeO3. The real compositions Bi1?xLaxFeO3 and BiFe1?xMnxO3 with x = 0.0, 0.1, 0.2, 0.3 were modeled by substitution of one, two and three Bi3+ or Fe3+ by La3+ or Mn3+ in the orthorhombic BiFeO3 structure, respectively. Density functional theory within the generalized gradient approximation with Hubbard correction of Dudarev (GGA + U) and plane wave pseudo-potential approach has been used to track the changes that occur in the structural parameters, electronic structure, magnetic, optical and polarization properties of the modified BiFeO3. The substitution of one Bi3+ with La3+ increases the band gap energy whereas the augmentation of La3+ substitutes decreases it. The substitutions of Fe3+ with Mn3+ do not change the band gap energy. The calculations predicted larger polarization of the modified BiFeO3, antiferromagnetism for Bi1?xLaxFeO3 and small ferrimagnetism for BiFe1?xMnxO3. Better multiferroic properties are expected for BiFe1?xMnxO3 materials (x = 0.1, 0.2) due to the increasing polarization and ferrimagnetic behavior. The optical properties were estimated by the calculated imaginary and real parts of the dielectric function. The increase of La3+ and Mn3+ substitutes lead to lower absorption intensity at energy range 2-7 eV.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700