Long-lasting distortion of GABA signaling in MS/DB neurons after binge-like ethanol exposure during initial synaptogenesis
详细信息    查看全文
文摘
Using a well-established model of binge-like ethanol treatment of rat pups on postnatal days (PD) 4-9, we found that maturation of GABAA receptor (GABAAR) miniature postsynaptic currents (mPSCs) was substantially blunted for medial septum/diagonal band (MS/DB) neurons in brain slices on PD 11-16. Ethanol reduced mPSC amplitude, frequency, and decay kinetics, while attenuating or exaggerating allosteric actions of zolpidem and allopregnanolone, respectively. The impact of ethanol in vivo was long lasting as most changes in MS/DB GABAAR mPSCs were still observed as late as PD 60-85. Maturing MS/DB neurons in na?ve brain slices PD 4-16 showed increasing mPSC frequency, decay kinetics, and zolpidem sensitivity that were nearly identical to our earlier findings in cultured septal neurons (). These rapidly developing mPSC parameters continued to mature through the first month of life then stabilized throughout the remainder of the lifespan. Finally, equivalent ethanol-induced alterations in GABAAR mPSC signaling were present in MS/DB neurons from both male and female animals. Previously, we showed ethanol treatment of cultured embryonic day 20 septal neurons distorts the maturation of GABAAR mPSCs predicting that early stages of GABAergic transmission in MS/DB neurons are vulnerable to intoxication injury (). Since the overall character, timing, and magnitude of GABAergic mPSC developmental- and ethanol-induced changes in the in vivo model so closely mirror chronologically equivalent adaptations in cultured septal neurons, this suggests that such parallel models of ethanol impairment of GABAergic synaptic development in vivo and in vitro should be useful for translational studies exploring the efficacy and mechanism of action of potential therapeutic interventions from the cellular to whole animal level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700