Entropy and the fourth moment phenomenon
详细信息    查看全文
文摘
We develop a new method for bounding the relative entropy of a random vector in terms of its Stein factors. Our approach is based on a novel representation for the score function of smoothly perturbed random variables, as well as on the de Bruijn始s formula of information theory. When applied to sequences of functionals of a general Gaussian field, our results can be combined with the Carbery-Wright inequality in order to yield multidimensional entropic rates of convergence that coincide, up to a logarithmic factor, with those achievable in smooth distances (such as the 1-Wasserstein distance). In particular, our findings settle the open problem of proving a quantitative version of the multidimensional fourth moment theorem for random vectors having chaotic components, with explicit rates of convergence in total variation that are independent of the order of the associated Wiener chaoses. The results proved in the present paper are outside the scope of other existing techniques, such as for instance the multidimensional Stein始s method for normal approximations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700