In vivo lung deposition and sub-acute inhalation toxicity studies of nano-sized alendronate sodium as an antidote for inhaled toxic substances in Sprague Dawley rats
详细信息    查看全文
文摘

Introduction

Alendronate sodium is a bisphosphonate agent used for the treatment of osteoporosis and other bone diseases. It has a strong chelating property to bind or, to some extent, counteract the effects of substances, such as magnesium, calcium citrate, ferrous fumarate, carbonyl iron, as well as the zinc gluconate, sulfate and acetate salts. The objective of the present study was to evaluate lung deposition and sub-acute inhalation toxicity of the alendronate sodium respiratory formulation.

Methods

Particle dimension of aerosols of alendronate was measured using a particle size analyzer. Alendronate was radiolabeled using Technetium-99m for in vitro and in vivo biodistribution studies. Alendronate at doses, 0.5 % , 1.0 % , and 1.5 % in ethanol-saline respiratory formulation was inhaled twice a day up to 5 weeks for inhalation toxicity investigations. Hematological, biochemical and lung toxicity biomarkers in bronchoalveolar lavage (BAL) fluid were determined at the end of the experiment. Histopathological analysis of lung tissues was carried out to observe any microscopic changes

Results

Particle size analysis revealed the size within 300-500 nm. Anderson cascade impactor results showed that the particles exhibited higher respirable fraction (55.52 % ) with MMAD of 4.66 ¦Ìm. Hematology, serum biochemistry and lung toxicity biomarkers in BAL fluid performed in the sub-acute toxicity studies indicated no adverse effects of alendronate sodium inhalation except for a significant increase in cholesterol levels and marginal increase in BAL fluid protein. At autopsy, no histopathological changes in major organs were observed.

Conclusions

The lung deposition and safety evaluation data observed from these studies suggested that aerosolized nanosized alendronate sodium by the inhalation route could be a new and promising route of administration as an antidote to radioactive substances through an increase in the bioavailability of the drug as well as a decrease in side effects on systemic delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700