Contribution of NMDA, GABAA and GABAB receptors and l-arginine-NO-cGMP, MEK1/2 and CaMK-II pathways in the antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in mice
详细信息    查看全文
文摘
It has been reported that the antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI) may result from the modulation of brain monoaminergic systems. However, the mechanisms of FDPI action are not fully understood. The aim of this study was to investigate the contribution of N-methyl-d-aspartate (NMDA) and gamma-aminobutyric acid (GABA) systems as well as l-arginine-nitric oxide-(NO)-cyclic guanosine monophosphate-(cGMP), mitogen-activated protein/extracellular signal-regulated kinase (MEK1/2) and Ca2+/calmodulin-dependent protein kinase II (CaMK-II) signaling pathways in the antidepressant-like effect of FDPI in the mouse forced swimming test (FST). The levels of NO and uptake of [3H]glutamate and [3H]GABA were determined in prefrontal cortices of Swiss mice. Pretreatments with NMDA (0.1 pmol/site, i.c.v., a NMDA receptor agonist), bicuculline (1 mg/kg, i.p., a GABAA receptor antagonist), phaclofen (2 mg/kg, i.p., a GABAB receptor antagonist) and l-arginine (750 mg/kg, i.p., a NO precursor), KN-62 (1 μg/site, a CaMK-II inhibitor), U0126 (5 μg/site, a MEK1/2 inhibitor) and PD09058 (5 μg/site, a MEK1/2 inhibitor) blocked the antidepressant-like effect of FDPI, at a dose of 1 mg/kg, in the FST. ODQ (30 pmol/site, i.c.v., a soluble guanylate cyclase (sGC) inhibitor) in combination with a sub-effective dose of FDPI (0.1 mg/kg, i.g.) reduced the immobility time in the FST. The administration of FDPI (50 mg/kg) to mice increased the glutamate uptake and reduced NO levels in the prefrontal cortex of mice. The results suggest a contribution of NMDA, GABAA and GABAB receptors and l-arginine-NO-cGMP pathway in the antidepressant-like action of FDPI in mice, and this effect is related to CaMK-II and MEK 1/2 activation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700