The lifetimes and energies of the first excited singlet states of diadinoxanthin and diatoxanthin: the role of these molecules in excess energy dissipation in algae
详细信息    查看全文
文摘
The lifetimes of the first excited singlet states (21Ag) of diadinoxanthin and diatoxanthin, carotenoids involved in the xanthophyll cycle in some genera of algae, have been measured by femtosecond time-resolved optical spectroscopy to be 22.8 ± 0.1 ps and 13.3 ± 0.1 ps, respectively. Using the energy gap law for radiationless transitions set forth by Englman and Jortner (Mol. Phys. 18 (1970) 145-164), these lifetimes correspond to S1 excited state energies of 15210 cm−1 for diadinoxanthin and 14620 cm−1 for diatoxanthin. The lowest excited singlet state energy of Chl a has an energy of 14700 cm−1. The fact that the S1 state energy of diadinoxanthin lies above that of Chl a, whereas the S1 state energy of diatoxanthin lies below that of Chl a, suggests that the xanthophyll cycle involving the enzymatic interconversion of diadinoxanthin and diatoxanthin may play a role in regulating energy flow between these molecules and Chl a in many species of algae, essentially fulfilling a role identical to that proposed for violaxanthin and zeaxanthin in higher plants and green algae (Frank et al. (1994) Photosyn. Res. 41, 389-395).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700