Non-invasive integrative analysis of contraction energetics in intact beating heart
详细信息    查看全文
文摘
The comprehensive study of human pathologies has revealed the complexity of the interactions involved in cardiovascular physiology. The recent validation of system's biology approaches - like our Modular Control and Regulation Analysis (MoCA) - motivates the current interest for new integrative and non-invasive analyses that could be used for medical study of human heart contraction energetics.

By considering heart energetics as a supply-demand system, MoCA gives access to integrated organ function and brings out a new type of information, the ¡°elasticities¡±, which describe in situ the regulation of both energy demand and supply by cellular energetic status. These regulations determine the internal control of contraction energetics and may therefore be a key to the understanding of the links between molecular events in pathologies and whole organ function/dysfunction. A wider application to the effects of cardiac drugs in conjunction with the direct study of heart pathologies may be considered in the near future. MoCA can potentially be used not only to detect the origin of the defects associated with the pathology (elasticity analyses), but also to provide a quantitative description of how these defects influence global heart function (regulation analysis) and therefore open new therapeutic perspectives. Several key examples of current applications to intact isolated beating heart are presented in this paper. The future application to human pathologies will require the use of non-invasive NMR techniques for the simultaneous measurement of energy status (31P NMR) and heart contractile activity (3D MRI).

This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700