Efficient dye regeneration in solid-state dye-sensitized solar cells fabricated with melt processed hole conductors
详细信息    查看全文
文摘
A new method for melting hole transporting materials (HTM) into mesoporous TiO2 electrodes to obtain solid-state dye-sensitized solar cells (DSSC) is reported. Internal coverage is determined from the efficiency of hole conductor oxidation by photo-oxidized dyes (dye regeneration), measured using transient absorption spectroscopy. High efficiency regeneration indicates complete coverage of the electrode internal surface. A high work function hole conductor (>5.2 eV) was found to give shorter regeneration lifetimes (<1 ¦Ìs) and better regeneration efficiencies (>90 % ) than expected. Cell photocurrents were low, but improved after iodine vapor doping of the hole conductor. Counter intuitively, doping also reduced the recombination rate constant 7-fold. A solid state solar cell with power conversion efficiency of 0.075 % at 1 sun is reported.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700