Spatial Coupling in Cyclic Population Dynamics: Models and Data
详细信息    查看全文
  • 作者:Haydon ; Daniel T. ; Greenwood ; Priscilla E.
  • 刊名:Theoretical Population Biology
  • 出版年:2000
  • 出版时间:November, 2000
  • 年:2000
  • 卷:58
  • 期:3
  • 页码:239-254
  • 全文大小:442 K
文摘
We use a dynamic random field to model a spatial collection of coupled oscillators with discrete time stochastic dynamics. At each time step the phase of each cyclic local population is subject to random noise, incremented by a common dynamic, and pulled by a coupling force in the direction of some collective mean phase. We define asynchrony and derive expressions for its measurement in this model. We describe robust methods for phase estimation of cyclic population time series, for estimating strength of coupling between local populations, and for measuring variance of locally acting noise from field data. Proposed methods allow intermittently acting phase synchronizing events operating over large spatial scales to be distinguished from more continuous and possibly locally acting coupling, both of which could result in elevated levels of phase synchronization. We demonstrate the utility of this approach by applying it to classical spatial time series data of Canadian lynx. Analysis confirms findings of previous studies and reveals evidence to suggest that interpopulation coupling was weaker over the 20th century than for the 1800s. Analysis supports the notion that synchrony in these populations is maintained by a continuous and locally acting coupling between adjacent regions with large phase adjustments occurring only infrequently. When this coupling is absent, asynchrony develops between populations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700