Low power analog readout front-end electronics for time and energy measurements
详细信息    查看全文
文摘
We report on the design and measurements of an analog front-end readout electronics dedicated for silicon microstrip detectors with relatively large capacitance of the order of tens pF for time and energy measurements of incoming pulses. The front-end readout electronics is required to process input pulses with an average rate of 150 kHz/channel with low both power consumption and noise at the same time. In the presented solution the single channel is built of two different parallel processing paths: fast and slow. The fast path includes the fast CR-RC shaper with the peaking time tp=40 ns and is optimized to determine the input charge arrival time. The slow path, which consists of the slow CR-(RC)p>2p> shaper with the peaking time tp=80 ns, is dedicated for low noise accurate energy measurement. The analog front-end electronics was implemented in UMC 180 nm CMOS technology as a prototype ASIC AFE. The AFE chip contains 8 channels with the size of 58 渭m脳1150 渭m each. It has low power dissipation Pdiss=3.1 mW per single channel. The article presents the details of the front-end architecture and the measurement results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700