Organic chromophore-sensitized ZnO solar cells: Electrolyte-dependent dye desorption and band-edge shifts
详细信息    查看全文
文摘
An organic chromophore D5 (3-(5-(4-(diphenylamino)styryl)thiophene-2-yl)-2-cyanoacrylic acid) was tested as a sensitizer in photoelectrochemical mesoporous ZnO solar cells. Using thin (3 μm) mesoporous ZnO electrodes, high incident photon-to-current conversion efficiencies of up to 70 % were obtained, while power conversion efficiencies up to 2.4 % were found in simulated sunlight (100 mW cm−2). Long dye adsorption times (16 h) could be used without aggregation or precipitation of the dye. The composition of the iodide/triiodide-based electrolyte was found to be crucial in optimization of the ZnO-based dye-sensitized solar cell. A high concentration of Li+ ions was found to be shift the ZnO conduction band edge to more negative potential, whereas opposite behavior is found for mesoporous TiO2 cells. It was also found to be detrimental for solar cell performance and stability. Electrolyte-dependent and photoinduced dye desorption from the ZnO electrode was identified as a major stability problem in D5-sensitized ZnO solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700