Controlling oxygen vacancies and properties of ZnO
详细信息    查看全文
文摘
Intrinsic defects in semiconductors play crucial roles on their electrical and optical properties. In this article, we report on a facile method to control concentration of oxygen vacancies inside ZnO nanostructures and related physical properties based on adjustment of thermal transformation conditions from ZnO2 to ZnO, including annealing atmosphere and temperature. ZnO2 spheres assembled with nanoparticles were formed through the reaction between zinc nitrate and hydrogen peroxide. Significantly, it was found that the adopted temperature and atmosphere have remarkable impact on the concentration of oxygen vacancies, which was revealed by the variations of featured Raman scattering peaks at 584聽cm鈭?. Furthermore, with the increase of oxygen vacancies inside ZnO, the optical band-gap was found to red-shift 350聽meV and the room-temperature ferromagnetism became stronger up to 1.6聽emu/mg. The defect formation and evolution were discussed according to the chemical equilibrium of decomposition reaction under special local heating environment. This work demonstrated that ZnO2 decomposition is an effective process to control the defect states inside ZnO and related properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700